Tracking Control for Multiple Trailer Systems by Adaptive Algorithmic Control
نویسندگان
چکیده
In recent years, a truck-trailer system is the most useful physical distribution system. The truck-trailer systems have more convenience than coastal services or freight trains. Meanwhile, problems of the traffic jam and the air pollution in an urban area have become serious, year after year. Therefore improvement and rationalization of the transport efficiency are social needs. There are many papers suggesting a platoon system of several trucks as a part of development of ITS (Intelligent Transport System). These platoon systems consist of several unmanned trucks automatically following a truck driven by a conductor, and it is commonly believed that it brings improvements of energy efficiency along with alleviation of the traffic jam. Moreover, there is a purpose of covering insufficient workforce of truck drivers who have to do severe labors, too. In the platoon, trucks are not physically connected to each other, and thus there is much flexibility. On the other hand, even if each vehicle is physically connected by mechanical linkage, this is not important restrictions, for transport robots which are operated in the factory, because moving range and action plan are limited. Moreover, the multiple trailer system is safer than platoon system, because if each vehicle is physically connected, there is no danger of collision among trailers. In this paper, we deal with a control method for a physically connected multiple trailer robot, which is a transport system in factories. The control method of connected vehicle has been studied for a long time (Laumond, 1986). In particular, there are many papers which studied controlling its backward motion with guaranteed stability (Sampei & Kobayashi, 1994). Moreover, kinematical model of a multiple trailer system is described by a nonholonomic system, and it is a controllable nonlinear system (Hermann & Krener, 1977). In theoretical field, it has been a hot subject of research, because asymptotic stabilization is impossible using one continuous time-invariant since the nonholonomic system does not satisfy the Brockett's necessary condition for stabilizability (Brockett, 1983). Therefore, the control problem of nonholonomic system is a theoretically difficult problem, thereupon various researches such as time-variant controller (M'Closkey & Murray, 1993) or hybrid control techniques (Matsune et al., 2005) are performed. We look at this issue from more practical point of view, then investigate a real-time control algorithm, which is based on the so called algorithmic control (Kobayashi et al., 2005a), (Imae et al., 2005) with a similar formulation of the model predictive control (MPC)
منابع مشابه
Trajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer
The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...
متن کاملCoordinated Control of a Tractor-Trailer and a Combine Harvester by Neural Adaptive Robust Control
In this paper, the coordinated control problem of a tractor-trailer and a combine harvester is taken into account in the presence of model uncertainties by using the leader-following approach to track a reference trajectory for the first time. At first, a second-order leader-follower dynamic model is developed in Euler-Lagrange form which preserves all structural properties of the dynamic model...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملImproving the velocity tracking of cruise control system by using adaptive methods
Accurate and correct performance of controller in cruise control systems is important. Hence, in such systems, controller should optimize itself against noise and probable changes in system dynamic. As a matter of fact, in this article three approaches have been conducted to-ward this purpose: MIT, direct estimation and indirect estimation. These approaches are used as controllers to track refe...
متن کامل